

Criterion-1: Curricular Aspects

Key Indicator – 1.3: Curriculum Enrichment

Metric: 1.3.3

Programme: M.Sc. Physics

Syllabus	https://www.du.ac.in/uploads/RevisedSyllabi1/Annexure-						
	18.%20Revised MSc Physics course version-R1.pdf						
List of Students	Annexure-I						
Sample Project Reports	Annexure-II						

Annexure-I

List of Students

DEPARTMENT OF PHYSICS AND ASTROPHYSICS

Dissertation Allotment List M.Sc. Final Year (2022-2023 Batch)

S.No.	Name	Roll No.	Supervisor	Semester (s)
1	Deeksha Singh	21025762016	Prof. Mohd. Naimuddin	IV
2	Diksha Sharma	21025762018	Prof. S. Annapoorni	IV
3	Latika	21025762031	Prof. Patrick Das Gupta	IV
4	Pankaj Pawar	21025762039	Prof. Patrick Das Gupta	IV
5	Saurabh Singh	21025762055	Prof. S.A. Hashmi	III + IV
6	Shubham Kumar Tiwari	21025762058	Prof. Debajyoti Choudhaury	III + IV
7	Sudipta Mondal	21025762060	Prof. Debajyoti Choudhaury	III + IV
8	Aarushi Rawat	21026762001	Prof. T.R. Seshadri	III + IV
9	Ananthakrishnan R	21026762007	Prof. Kirti Ranjan	III + IV
10	Himanshu	21026762019	Prof. Nivedita Deo	III + IV
11	Sunidhi Rajpal	21026762055	Prof. S.K. Mandal	III + IV
12	Supriya Garg	21026762056	Prof. Nivedita Deo	III + IV
13	Yash Yadav	21026762067	Dr. P. Senthil Kumar	III + IV
14	Yogita Kumari	21026762068	Prof. Patrick Das Gupta	IV
15	Aakash Malik	21026762069	Prof. Patrick Das Gupta	III + IV
16	Kaushkee Vats	21036762020	Dr. Jyoti Rajput	III + IV
17	Nishtha Lakhanpal	21036762036	Prof. Mohd. Naimuddin	III + IV
18	Sachin	21036762045	Dr. Suresh Kumar	III + IV
19	Shakuntala Kumari	21036762050	Dr. Debabrat Mishra	III + IV
20	Shiv Prakash Mishra	21036762052	Dr. Abhass Kumar	IV
21	Shivam Bhati	21036762053	Prof. S.K. Chamoli	III + IV
22	Shivam Kumar	21036762054	Prof. Poonam Silotia	III + IV
23	Tushar Bhalla	21036762065	Prof. S. Somorendro Singh	III + IV
24	Mansi Dagar	21047762012	Prof. S. Annapoorni	IV
25	Medha Bhindwar	21047762014	Prof. Awadhesh Prasad	IV
26	Runjhun Mittal	21047762027	Dr. Sumalay Roy	III + IV
27	Seema Sahu	21047762028	Prof. Amarjeet Kaur	III + IV
28	Tanya Wadhwa	21047762033	Prof. Anjan Dutta	III + IV
29	Jasbir Singh	21056762033	Prof. Sanjay Jain	III + IV
30	Dhruv Jain	21068762001	Prof. Awadhesh Prasad	III + IV
31	Shreyashi Tiwari	21068762005	Prof. Amita Chandra	IV
32	Mallicka Kundu	21079762011	Dr. Suresh Kumar	IV
33	Manurena Gupta	21079762012	Prof. Mohd. Naimuddin	IV
34	Pushpendra Kapri	21080762004	Dr. S.K. Verma	III + IV
			Pocarah	*

09.09.2022

प्रो. ब्रजेश चन्द्र चौधरी/Prof. B. C. Choudhary विभागाध्यक्ष / Head भौतिकी एवं खगोल भौतिकी विभाग Department of Physics & Astrophysics दिल्ली विश्वविद्यालय/University of Delhi दिल्ली—110007/Delhi-110007

Annexure-II

Sample Project Reports

Certificate of Declaration

This is to certify that the M.Sc. Dissertation entitled "Thermal Plasma Deposition of Aluminium on Glass Substrate" submitted to the University of Delhi by RISHABH PRAJAPATI, in partial fulfilment of the requirements for the award of the degree of M.Sc. in Physics, is a record of her own research work. He has carried out research since 15 Sept., 2020 at the Department of Physics and Astrophysics, University of Delhi, Delhi, India. To the best of our knowledge, no part of the dissertation has been submitted for the award of any other degree by anybody in any other university.

Date: 01 January 2021

Dr. Devki Nandan Gupta Assistant Professor Department of Physics & Astrophysics University of Delhi, Delhi-110007

DNGubta

Dr. Devki Nandan Gupta (Supervisor) Department of Physics & Astrophysics University of Delhi

Four-form Gravity and Torsion

April 25, 2019

Dissertation submitted to Department of Physics and Astrophysics, University of Delhi, in partial fulfillment of the requirements, for the degree of M.Sc, in Physics.

Submitted by

Rupak Bag

Under the Supervision of Prof. Patrick Das Gupta.

Certificate of Declaration

This is to certify that the M.Sc. Dissertation entitled "Terahertz radiation generation from laser-plasma interactions" submitted to the University of Delhi by NAMRATA SHARMA (Roll No. 19036762038, M.Sc.-Physics Sem.-IV), in partial fulfilment of the requirements for the award of the degree of M.Sc. in Physics, is a record of her own research work. She has carried out research since 15 Jan., 2021 at the Department of Physics and Astrophysics, University of Delhi, Delhi, India. To the best of our knowledge, no part of the dissertation has been submitted for the award of any other degree by anybody in any other university.

Date: 27 June 2021

Dr. D. N. Gupta
Associate Professor
Department of Physics & Astrophysics
University of Delhi
Delhi-110007, India

DNGubta

Dr. Devki Nandan Gupta (Supervisor) Department of Physics & Astrophysics University of Delhi

PLASMONIC BASED SENSORS

Dissertation Report submitted to University of Delhi

by

Tarun Yadav

M.Sc. Physics

(1886955)

Under the supervision of

Prof. S. Annapoorni

Department of Physics and Astrophysics
University of Delhi
New Delhi,110007

DECLARATION

I hereby declare that the report titled, 'Plasmonic Based Sensors', submitted to the University of Delhi for the award of the Degree of M,.Sc. in Physics, is the record of work carried out by me during the period from January 2020 to April 2020, under the guidance of Prof. S.Annapoorni, Department of Physics and Astrophysics, University of Delhi, 110007, and that it has not formed the basis for the any Degree, Diploma and Titles in this University or any other University or other similar Institution of Higher Learning.

From wherever I have used the text, data and simulation techniques, I have given the credits by citing them in the text of the report and have given credits in reference.

I have followed the norms and guidelines of the University while carrying out this work.

Date: June 2020 Tarun Yadav

Place: Delhi M.Sc. Physics

1886955

DEPARTMENT OF PHYSICS AND ASTROPHYSICS UNIVERSITY OF DELHI DELHI, 110007

CERTIFICATE

This is to certify that all the content of Dissertation Report entitled "Plasmonic based sensors" is a bonafied work carried out by <u>Tarun Yadav</u> (Roll no.1886955) to University of Delhi towards partial fulfilment of requirements for the award of Degree of M.Sc. Physics. This work was carried out by him in his IV semester under my guidance and supervision at Department of Physics and Astrophysics.

Date: June 2020 **Prof. S. Annapoorni**

Place: Delhi Department of Physics and Astrophysics

University of Delhi

Abstract

The present work focuses on the surface plasmon resonance based sensors for potential applications as sensors, especially in the area of biosensing. Theoretical simulations based on Mie Theory are performed to optimize the experimental parameters such as refractive index of medium for sensing applications. Finite difference time doman (FDTD) analysis were performed to understand the field enhancement in nanostructures and compare the parameters with Mie simulations.

Surface plasmon resonance (SPR) refers to the collective oscillations of the conduction electrons in metallic nanostructures. Both the intensity and the position of the SPR strongly depend on the size, shape and composition of the nanostructures, as well as the dielectric properties of the surrounding environment. This variety of responsive variables allows for optical sensors to be created using plasmonic metallic nanostructures. Hence plasmon-enhanced optical sensors are finding increasing application in detection of analytes in biomedical diagnosis, homeland security, food safety and environmental monitoring. "Plasmonic sensor" here refers to sensors that directly utilize shifts in the spectral properties of the plasmon to act as the transducer of the sensing signal.

The variation in the resonant wavelength induced by silver nanoparticle size and the dielectric constant of the medium observed experimentally using optical absorption is compared with the existing theories. The experimentally observed plasmonic resonances along with the simulations are very important for developing optical based sensors.

Contents

DECLARATION	11
CERTIFICATE	III
ACKNOWLEDGEMENTS	IV
ABSTRACT	v
1.INTRODUCTION	1
1.1 What are Nanomaterials?	1
1.1.1 Surface to volume ratio	1
1.1.2 Quantum confinement	2
1.2 Noble Metal Nanoparticles	2
1.3 Applications of Metal Nanostructures	3
1.3.1 Surface Plasmon Resonance	3
1.4 Localised Surface Plasmonic Resonance	7
2.DRUDE LORENTZ MODEL	8
2.1 Plasmon frequency	8
2.2 Frequency dependence of permittivity	10
2.3 Drawback of Drude Theory	14
3.MIE THEORY AND FDTD SIMULATIONS	15
3.1 History of Mie theory	15
3.2 Formulation of Mie Theory	15
2.2 Drawbacks of Mio Theory	10

3.4 Finite difference time Domain(FDTD)	19
3.5 "Lumerical 2020 a" Modelling	20
4.EXPERIMENTAL METHODS	24
4.1 Method of preparation of Nanoparticles	24
4.2 UV-Visible spectroscopy 4.2.1 Basic Principle 4.2.2 Working Mechanism	26 26 27
5.RESULTS AND DISCUSSIONS	28
5.1 Motivation	28
5.2 Extinction Coefficient (Mie Theory)	29
Effect of Surrounding Medium and size	31
5.3 FDTD simulations	34
5.4 Interpretation of UV-Visible Absorption Spectra of Ag nanoparticles prepared by polyol process	41
5.5 Estimation of particle size using UV-Visible spectra	44
5.6 Consideration of Particle size in Refractive index	45
5.7 Comparison of Mie Theory Result with Experiment	47
5.8 Gans Theory(Extended Mie theory)	47
CONCLUSION	50
RIBLIOGRAPHY	51

Microstructural investigation of ZnO nanoparticles using Rietveld Refinement method

(Dissertation)

Advisor

Prof. Shyama Rath

by

Monalisha Patra

Examination Roll No-20047762017

Department of Physics and Astrophysics

University Of Delhi

Declaration

I, Monalisha Patra, declare that the dissertation titled "Microstructural investigation of ZnO
nanoparticles using Rietveld Refinement method" and the work presented in it are my own. This
y q t m" y c u " f q p g " y j q n n { " f w t k p i " o { " O c u v g t ø u " f g i t g g
work of others and stated the references wherever needed and this is always clearly attributed. I have
quoted from the work of others and the source is always given. Except for such quotations, this thesis is
entirely my work. I have acknowledged all main sources of help. While carrying out this work, I have
followed the norms and guidelines of the University.

Sign:	Monalisha Papa

Date: 30-04-2022

Place: Delhi

Certificate

This is to certify that the dissertation entitled, 'Microstructural investigation of ZnO nanoparticles using Rietveld Refinement method' submitted by Ms. Monalisha Patra to Department of Physics and C u v t q r j { u k e u " k p " r c t v k c n " h w n h k n o g p v " h q t " v j g " c y c bonafide work carried out by her under my guidance.

To the best of my knowledge, the work presented here has not been previously submitted to any institution for the award of any degree.

Date: 30th April 2022

Place: Delhi

Prof. Shyama Rath

Department of Physics and Astrophysics University of Delhi

Acknowledgments

I would like to express my sincere gratitude to my thesis advisor, Prof. Shyama Rath from the Department of Physics and Astrophysics, University of Delhi, for introducing me to this topic and encouraging me to acquire this valuable skill relevant for understanding the properties of materials. I am grateful for her motivation, support, and guidance during my thesis. It would have been tough for me to complete my project without her. A very big thanks to Mr. Gaurav Gupta for his consistent guidance, helpful approach, and support throughout this project. I would also like to thanks my beloved senior Ms. Pragati Sharma for making me learn about the fundamentals and her guidance through the work. They consistently allowed this project to be my work but steered me in the right direction whenever they thought I needed it. I would sincerely want to thank you all once again for giving me this meaningful platform which turned out to be a handful of valuable experience.

INDEX

(i) Declaration of Authorship
(ii) Certificate
(iii) Abstract
(iv) Acknowledgment
(v) List of Figures
(vi) List of Tables
1. Introductioní í í í í í í í í í í í í í í í í í í
1.1 Zinc Oxideí í í í í í í í í í í í í í í í í í í
1.2 Physical Propertiesí í í í í í í í í í í í í í í í í í í
1.3 Chemical Propertiesí í í í í í í í í í í í í í í í í í í
1.4 Titanium Oxideí í í í í í í í í í í í í í í í í í í
2. Synthesis and Characterization Techniqueí í í í í í í í í í í í í í í í í í í
2.1 Synthesis Techniquesí í í í í í í í í í í í í í í í í í í
2.1.1 Mixing Technique (High Energy Ball Milling)í í í í í í í í í í í í í í í í í í
2.1.2 Materialsí í í í í í í í í í í í í í í í í í í
2.2 Characterization Technique: X-Ray Diffractioní í í í í í í í í í í í í í í í í í í
2.3 Crystallite sizeí í í í í í í í í í í í í í í í í í í
2.3.1 Debye Scherrer methodí í í í í í í í í í í í í í í í í í í
2.3.2 Williamson Hall Methodí í í í í í í í í í í í í í í í í í í
$2.4 \ ZnO \ lattice\'i \ \'i \$
3. Rietveld Refinement Methodí í í í í í í í í í í í í í í í í í í
3.1 Peak shape functions í í í í í í í í í í í í í í í í í í í
3.2 Peak Widthí í í í í í í í í í í í í í í í í í í
3.3 Parameters obtained from refinementí í í í í í í í í í í í í í í í í í í
3.4 Analysisí í í í í í í í í í í í í í í í í í í
3.5 Refinement Processí í í í í í í í í í í í í í í í í í í
4. Results & Discussioní í í í í í í í í í í í í í í í í í í
5.Learning outcomes & Future scopeí í í í í í í í í í í í í í í í í í í
5.1 Learning outcomesí í í í í í í í í í í í í í í í í í í
5.2 Future scopeí í í í í í í í í í í í í í í í í í í
faranacas & Ribliography () () () () () () () () () (

List of Figures

Figure 1.1. Wurtzite crystal structure of ZnOí í í í í í í í í í í í í í í í í í í
Figure 1.2. Structures of a) anatase b) rutile c) brookiteí í í í í í í í í í í í í í í í í í í
Figure 2.1. (a) High Energy ball mill machine, (b) Ball mill jars, (c) Cylindrical shells, (d) Balls, (e) Panel of Ball Mill, (f) Schematic view of internal ball milled processí í í í í í í í í í í í í í í í í í í
Figure 2.2. Schematic of constructive interference condition: Bragg's diffractioní í í í í í í í í í .7
Figure 2.3. (a) XRD pattern and (b) change in (002) peak of ZnO nanoparticles prepared at milling timesí í í í í í í í í í í í í í í í í í í
Figure 2.4. Williamson Hall Plot of ZnO nanoparticles at (a) 0, (b) 2, (c) 4, (d) 6 milling hoursí í í10
Figure 2.5. (a) XRD pattern of TiO ₂ nanoparticles prepared at milling timesí í í í í í í í í í í í í í
Figure 2.6. Williamson Hall Plot of TiO ₂ nanoparticles at (a) 0, (b) 2 and (c) 4 milling hoursí í í í 12
Figure 3.1. Gaussian vs Lorentzian Functioní í í í í í í í í í í í í í í í í í í
Figure 4.1. Rietveld refined (black, red and blue colour indicates observed, calculated and difference between them) of ZnO samples milled at different timesí í í í í í í í í í í í í í í í í í í
Figure 4.2. (a) Lattice parameter a, (b) c, (c) cell volume and (d) crystallite size calculated using Debye Scherrer formula as a function of milling time in minutesí í í í í í í í í í í í í í í í í í í
Figure 4.3. (a) Lattice parameters c/a ratio and (b) u (Z coordinate of oxygen atom) as a function of milling time in minutesí í í í í í í í í í í í í í í í í í í

List of Tables

Table 2.1. Crystallite size of ZnO from XRD patterní	í	í	í	í	í	í	í	í	í	í	í	í	í	í	í	í	.9
Table 2.2. Crystallite size of TiO ₂ from XRD patterní	í	í	í	í	í	í	í	í	í	í	í	í	í	í	í	í	.11
Table 4.1. Structural parameters obtained from Rietvel	d 1	efi	ine	eme	ent	of	X	RI) p	at	ter	ní	í	í	í	í	30

Simulations of the optical properties of metal nanoparticles

Dissertation Report

Under the supervision of

Prof. Shyama Rath

by

Pragati Sharma

M.Sc. Physics (19068762006)

Department of Physics and Astrophysics University of Delhi Delhi-110007

Declaration

I hereby declare that the report titled, 'Simulations of optical properties of metal nanoparticles and determination of size of metal NP's', submitted to the University of Delhi for the award of the Degree M.Sc. in Physics, is the record of bonafied work carried out by me during the period from September 2020 to December 2020, under the guidance of Prof. Shyama Rath, Department of Physics and Astrophysics, University of Delhi, Delhi-110007.

The results in the dissertation have not been previously submitted to any institution for the award of any degree or otherwise.

While carrying out this work, I have followed the norms and guidelines of the University.

Date: January 2021

Place: Delhi

Pragati Sharma

M.Sc. Physics 19068762006

DEPARTMENT OF PHYSICS AND ASTROPHYSICS UNIVERSITY OF DELHI DELHI, 110007

Certificate

This is to certify that the dissertation entitled, "Simulations of optical properties and determination of size of metal nanoparticles", submitted by Pragati Sharma, a final year student of SGTB Khalsa College, pursuing MSc Physics, in partial fulfilment for the award of Master's Degree in Science to Department of Physics and Astrophysics, University of Delhi is a record of bonafide work carried out by her under my supervision and guidance.

The results in the dissertation have not been previously submitted to any institution for the award of any degree or otherwise.

Shyame Rath

Date: 05th January 2021 Prof. Shyama Rath

Place : Delhi Department of Physics and Astrophysics University of Delhi

Abstract

Nanoparticles are the particles with the length of <100 nm at least in one direction. Their properties are different from the bulk particles of same element/ compound. Due to the presence of Quantum effects in smaller dimensions, the properties become dependent on size and show variation from bulk materials.

A dispersion of nanoparticles appears macroscopically homogeneous but microscopically inhomogeneous. Nanoparticles act as a bridge between the atomic and macroscopic world.

The main thing, which was focused here, was the dependence of optical properties of Gold (Au) and Silver (Ag) nanoparticles on size and wavelength. The size and wavelength dependence was seen using multiple scattering theory and expected plots were received. Then for determining the size of nanoparticles, we used same theory and got experimental plots. Fitting the experimental and theoretical plots helped us to get to know about the size of nanoparticle.

MATLAB software was used in simulation and determination of size of nanoparticles. The zip file used here to run Mie Theory codes was SPlaC-v1_01.zip, which is available online. More than the expected time was spent learning this software and simulating the data. The main focus was to study the optical properties of gold nanoparticles with a flavour of silver nanoparticles included. The use of UV-Visible Spectrometer was not done here in person as due to lockdown there was constraint on working in the department. However, through online mode of experimental solid-state lab module, a brief idea of how it gives experimental data was provided by the Supervisor.

Contents

Declaration	2
Certificate	3
Acknowledgement	4
Abstract	5
CHAPTER 1- Introduction	7
1.1 Metal nanoparticles	7
1.2 Optical response of Gold and Silver NP's	7
1.3 Mie theory	12
CHAPTER 2- Simulations of Au and Ag nanoparticles	14
2.1 Introduction	14
2.2 Effect of radius in ethanol medium	14
2.3 Effect of medium for size of 10nm	15
2.4 Dielectric constants as function of wavelength	16
2.5 Conclusion from simulations	17
CHAPTER 3- Experimental Methods	18
3.1 Introduction	18
3.2 Turkevich method	18
3.4 Optical absorption spectroscopy of nanoparticles	19
CHAPTER 4- Determination of size of gold and silver NP's	21
4.1 Introduction	21
4.2 Methodology used:	21
4.3 Determining the size of NP's from UV-VIS spectroscopy	23
CHAPTER 5- Summary and future work	28
5.1 Learning Outcomes	28
5.2 Results	28
5.3 Future work	28
References	29
Annendiy	30

Microstructural Investigations of Metal-Oxide Nanoparticles

DISSERTATION REPORT

under the supervision of

Prof. Shyama Rath

Submitted by:

ONIMA BISHT

M.Sc. Physics (19025762029)

DEPARTMENT OF PHYSICS AND ASTROPHYSICS,

UNIVERSITY OF DELHI

DELHI-110007

June 30, 2021

Declaration

I hereby declare that the report titled "Microstructural investigations of metal-oxide nanoparticles", submitted to University of Delhi for the award of the Degree M. Sc in Physics is the record of bonafide work carried out by me during the period from January 2021 to May 2021, under the guidance of Prof. Shyama Rath, Department of Physics and Astrophysics, University of Delhi, Delhi – 110007.

The results in the dissertation have not been submitted previously to any institution for the award of any degree or otherwise.

While carrying out this work, I have followed the norms and guidelines of the University.

Date: 27th June, 2021 Onima Bisht

Place: Delhi M.Sc. Physics

(19025762029)

Onina Bisht

Certificate

This is to certify that the dissertation titled "Microstructural and optical investigations of metal-oxide-semiconductor nanoparticles" submitted to the Department of Physics and Astrophysics, University of Delhi by Onima Bisht for the partial fulfilment of the requirements for the degree of Master of Science in Physics, 2019-21 is a record of bonafide work carried out by her under my supervision and guidance.

The results in the dissertation have not been previously submitted to any institution for the award of any degree or otherwise.

Shyama Reth 29/06/2021

Date: 29 June, 2021

Place: Delhi

Supervisor:

Prof. Shyama Rath

Department of Physics and Astrophysics,

University of Delhi, New Delhi, 110007.

Abstract

The accurate measurement of particle sizes has been of fundamental and primary importance in nanoscience. In the following project, nickel oxide nanoparticles are synthesized via the sol-gel route using nickel acetate tetrahydrate and methanol as precursors. The characterization techniques used in the present study are **X-ray** diffraction, Transmission Electron Microscopy (TEM) and Vibrating Sample Magnetometer (VSM). The structural properties of samples annealed at 400°C, 600°C, and 800°C were studied and analysed using the x-ray diffraction technique. The highest peak intensity was displayed by nanoparticles annealed at 800°C. The crystallite size of the nanoparticles increased from 12-27 nm with the increase in annealing temperature. The XRD patterns were plotted in the Origin software where the average crystallite size and stress of nanoparticles at the three annealed temperatures were calculated using the Scherrer's Equation and Williamson Hall analysis. TEM Data for nickel oxide nanoparticles prepared at 600°C was provided to study their morphology. ImageJ software was used to calculate the average grain sizes of the particles. A comparative study of XRD and TEM data annealed at 600°C was done and the reasons for different results were concluded. Further, Rietveld refinement analysis, using FullProf software, was performed on the model structure to get more refined and detailed parameters of the nanoparticles. The refinement was also tried on three models of non-stoichiometric Nickel Oxide (NiO_x , Ni_xO , $Ni_{1-x}O_x$), but the results were not satisfactory. The magnetic properties of NiO nanoparticles were also characterized using Vibrating Sample Magnetometer (VSM). The hysteresis curves for the three samples were compared and plotted using the Origin software.

Table of Contents

Declaration	2
Certificate	
Acknowledgements	4
Abstract	5
Chapter 1 - Introduction	8
1.1. Relevance of Nickel Oxide	8
1.2. Crystal Structure of NiO	9
1.3. Objective of the study	9
Chapter 2 Synthesis of NiO nanoparticles	10
2.1. Synthesis of nanoparticles	10
2.2. Sol-Gel synthesis	10
2.2.1 The Sol	11
2.2.2 The Gel	11
2.2.3 Sol-gel method	11
2.2.4 Nanoparticles through homogeneous nucleation	12
2.3. Sol-Gel Synthesis – Preparing NiO nanoparticles	
Chapter 3 Microstructural analysis of NiO nanoparticles	16
3.1. Introduction	16
3.2. Structural Analysis: X-Ray Diffraction	16
3.1.1. Understanding a diffraction pattern	16
3.1.2. Sources of peak broadening	18
3.1.3. Methods for determining crystallite size	19
a) Scherrer's formula	19
b) Williamson Hall Analysis	19
3.2. Results: XRD Data - Structural analysis	20
3.2.1.Results and discussion:	23
3.3. Rietveld Refinement	24
3.2.1 Introduction	24
3.3.2 Non-linear least squares	25
3.3.3 Background Intensity	26
3.3.4. Full-width at half maxima	26

3.3.5. Goodness of fit	26
3.3.6 Peak shape functions	27
3.4. Results: Rietveld Refinement Analysis	28
Chapter 4 Analysis of structural and magnetic properties of NiO nanoparticles	30
4.1. Transmission Electron Microscopy (TEM)	30
4.1.1. Principle and Construction	30
4.1.2. TEM results	31
4.2. Magnetic Properties of NiO nanoparticles	33
4.2.1. Hysteresis	34
4.2.2. Vibrating Sample Magnetometer: Principle and Working	34
4.2.3. VSM Results: Analysis	35
Chapter 5 - Summary	36
5.1. Learning Outcomes	36
References	37
Image References	38

SEMICONDUCTOR RADIATION DETECTORS: ELECROSTATICS AND

FABRICATION PROCESS

Dissertation

by

Niladri Mohan Das

Under the supervision of

Prof. Shyama Rath

Department of Physics and Astrophysics University of Delhi Delhi-110007

DECLARATION

I do hereby declare that the dissertation entitled, "Semiconductor Radiation Detectors: Electrostatics and Fabrication Process", submitted to the Department of Physics and Astrophysics, University of Delhi, for the award of Master's Degree in Science is a record of bonafide work carried out by me during the academic session 2020-21, from September 2020 to December 2020 under direct supervision and guidance of Prof. Shyama Rath and that it has not formed the basis of any diploma, degree or otherwise in this university or any other equivalent institution of higher education.

From wherever I have used text or data, I have given due credits through citations in the text or in the references.

I have adhered to the norms and guidelines of the University while carrying out this work.

Niladri Mohan Das

Date: 05.01.2021 Niladri Mohan Das

Place: Balasore MSc Physics

(19068762005)

Department of Physics and Astrophysics University of Delhi Delhi-110007

CERTIFICATE

This is to certify that all the contents of the dissertation entitled, "Semiconductor Radiation Detectors: Electrostatics and Fabrication Process", submitted to the University of Delhi, in partial fulfillment of requirements for the award of Master's Degree in Science, is a record of bonafide work carried out by Niladri Mohan Das (19068762005) in his IIIrd semester during the academic session 2020-21, from September 2020 to December 2020, under my direct supervision and guidance.

Shyame Rath

Date: 05/01/2021 **Place: Delhi**

Prof. Shyama Rath Department of Physics and Astrophysics, University of Delhi

ABSTRACT

Solid State Detectors, semiconductor ones in particular can detect a wide range of radiation from slow moving protons to electro-magnetic waves, and give a proper energy resolution.

This report consists of the electrostatics of a p-n junction diode (Si) used as a radiation detector. Dependent parameters like width of depletion layer, dopant concentration etc and calculated from the data using MATLAB. The plots related to electrostatics including potential profile are generated by simulating a mathematical model of the diode. Some parameters like surface area of diode are varied in the simulation and their effects on the results are studied. The aim is to enhance the understanding of the mechanisms underlying the degradation of the performances of semiconductor devices induced by ionizing radiation.

The capacitance and voltage data are provided through my supervisor's collaboration with International Atomic Energy Agency (CRP F11016).

The report includes the use of a Schottky diode as a detector, with several advantages over a p-n junction diode, along with its' fabrication.

CONTENTS
PAGE

DECLARATION	02
CERTIFICATE	03
ACKNOWLEDGEMENTS	04
ABSTRACT	05
CHAPTER 1: INTRODUCTION	07
1.1 Interaction of radiation with matter	07
1.2 Detector types	10
1.3 Detector mechanism	12
1.4 Advantages of Semiconductor Radiation Detectors	13
CHAPTER 2: ELECTROSTATICS OF A SEMICONDUCTOR RADIATION	
DETECTOR	14
2.1 Poisson and Continuity equations	14
2.2 Determination of the Dopant Concentration profile	14
2.3 Electric Field and Potential Profiles in One Dimension	21
CHAPTER 3: SCHOTTKY DIODE AND IT'S FABRICATION	25
3.1 Choice of Semiconductor Material	25
3.2 Schottky Diode as Radiation Detector	26
3.3 Advantages of a Schottky Diode	27
3.4 I-V characteristics	28
3.5 Fabrication of a Schottky Diode	30
3.6 Types of Silicon Wafer	33
CHAPTER 4: SUMMARY	36
4.1 Learning Outcomes	36
4.2 Results	
4.3 Future Work	36
REFERENCES	37
APPENDIX	38