

Criterion-1: Curricular Aspects

Key Indicator – 1.3: Curriculum Enrichment Metric: 1.3.3

Programme: M.Sc. Botany

Syllabus	https://www.du.ac.in/uploads/RevisedSyllabi1/Annexure-		
	15.%20M.Sc.%20BOTANY-course scheme-		
	revised%20on%207th%20June%202019.pdf		
Sample Project Reports	Annexure-I		
Sample Field Work	Annexure-II		
Documents			

Annexure-I Sample Project Reports

Determining the Genetic and Epigenetic Basis of Adaptations in *Arabidopsis thaliana*

DISSERTATION REPORT

(MARCH, 2019)

23rd January to 15th March

Under the supervision of

Dr. Sandip Das

Associate professor

Department of Botany, University of Delhi

Submitted By:

M. Ancy Nianlamlun Zou

M.Sc.(F)Botany

- 1. Acknowledgement
- 2. Introduction
- 3. Review of Literature
- 4. Methodology
 - To prepare ½ MS (Murashige&Skoog) Media
 - > To sterilize seeds of Arabidopsis thaliana col-0
 - To grow A. thaliana seedlings on ¹/₂ MS media
 - > To plant A. thaliana seedlings in soil rite
 - Growing A. thaliana seeds in different concentrations of 5-azacytidine (0µm,25µm,50µm and 100µm)
 - To perform GUS Assay
 - Growing of A. *thaliana* seeds in different conditions of abiotic stress (Salt stress and osmotic stress)
 - To check the presence of RNA in samples through agarose gel electrophoresis
 - DNAase treatment of the extracted RNA
 - To check the presence of DNAase treated RNA through Agarose gel electrophoresis
 - ➤ Synthesis of cDNA using iScriptTM kit
 - To perform qRT-PCR (Quantitative real time polymerase chain reaction) using Actin as primers
 - To visualised the synthesised cDNA through Agarose gel electrophoresis
- 5. Result & Discussions
- 6. Conclusions
- 7. Limitations
- 8. Future prospects
- 9. References

'Abiotic stress responses/ tolerance in bryophyte'

Dissertation submitted to the University of Delhi in partial fulfilment of the degree of MASTER OF SCIENCE

2019

(ASENATH SHISHAK)

DEPARTMENT OF BOTANY UNIVERSITY OF DELHI DELHI-110007 INDIA

CERTIFICATE

This Dissertation, a mandatory paper of theoretical nature (BOT 409) titled "Abiotic stress /tolerance in bryophytes" is being submitted by me to the Department of Botany, University of Delhi as partial fulfilment of M.Sc. dissertation for evaluation by the examiners. I will be fully accountable for any kind of plagiarism if found in my dissertation, and that the teacher involved and the Department concerned shall not be held responsible for it.

(Signature of the candidate) (ASENATH SHISHAK) M.Sc BOTANY Semester IV – 2019 • Introduction

• Bryophytes

- General characteristics
- Distribution of bryophytes
- Habitat of bryophytes
- Ecological significance of bryophytes
- Biogeochemical cycle and water retention
- Bryophytes as indicators of pollution
- Bryophytes as indicators of climate change
- Effects of climate/environmental change
- Adaptive mechanisms/tolerance response
- Bryophyte model organism for research
- Aim/ Objectives
- Materials/methods
- Results
- Discussion
- Conclusion
- References

Epigenetics regulation of gene expression during abiotic stress and plant development

Dissertation submitted in the partial fulfillment of the degree of Master of Science in Botany

By JYOTI YADAV Roll No. 1720201

Department of Botany University of Delhi April, 2019

CERTIFICATE

This dissertation, a mandatory paper of theoretical nature (BOT409) titled "**Epigenetics regulation of gene expression during abiotic stress and plant development**" being submitted by me to the Department of Botany, University of Delhi as partial fulfillment of M.Sc. dissertation for evaluation by the examiners. I will be fully accountable for any kind of plagiarism in my dissertation, and that the teacher involved and the department concerned shall not be held responsible for it.

(Signature of candidate) (Jyoti Yadav) M.Sc Botany Semester 2019

TOPIC	PAGE NO.
1. Introduction	4-5
2. Epigenetics	5-6
3. Major components of epigenetics	6-15
1-DNA modifiers	
1.2-DNA methyltransferase	
1.3-Cytosine demethylase and DNA glycosylases	
2-Histone modifiers	
2.1Acetylase and Deacetylase	
2.2Histone methyltransferase and demethylase	
2.3Histone phosphorylation	
2.4Histone variants, linker histone and non-histone protein	
3-Chromatin remodeling complexes	
4.Light conditions and epigenetics	15-17
5.Epigenetics response to drought	17-19
6.Epigenetics response to salinity stress	19-22
7.Epigenetics response to cold stress	22-25
8.Epigenetics regulation and plant development	25-27
9.SAGA complex and epigenetics regulation	27-31
10.Materials and method	32-33
11.Result	33-37
12.Discussion	37
13.Various techniques learnt in lab	38-42
14.References	43-48

AUTONOMOUS AND TOUCH INDUCED MOVEMENTS IN FLORAL ORGANS OF ANGIOSPERMS

DISSERTATION SUBMITTED TO THE UNIVERSITY OF DELHI IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR DEGREE OF

MASTER OF SCIENCE

2019

JYOTI SHARMA

DEPARTMENT OF BOTANY UNIVERSITY OF DELHI DELHI-110007 INDIA

CERTIFICATE

It is certified that the dissertation report entitled **"AUTONOMOUS AND TOUCH INDUCED MOVEMENTS IN FLORAL ORGANS OF ANGIOSPERMS"** is a part of paper BOT 409 and a bonafide record of the work in partial fulfilment of the Degree of Masters in Botany by **Ms. JYOTI SHARMA** under my supervision in the Department of Botany, University of Delhi.

PROF. RAJESH TANDON

(Supervisor)

	Title		Page no.
i)	Certificat	e	i
ii)	Declaratio	on	ii
iii)	Acknowle	edgements	iii
	A. INTR	ODUCTION	1-2
	B. ORG	ANS SHOWING MOVEMENT	3-10
	I.	Style	3
	II.	Stigma	4
	III.	Stamen	6
	IV.	Corolla	7
	V.	Androgynophore	8
	VI.	Pollinia	9
	C. CON	SEQUENCES OF MOVEMENT	11-15
	I.	Delayed Autonomous Selfing (DAS)	11
	II.	Outcrossing advantage	11
	III.	Diminished herkogamy	12
	IV.	Assured reproduction	13
	V.	Avoidance of damage to pollen due to rain	14
	VI.	Ensured seed production	14
	VII.	Effective pollen export/ presentation	14
	VIII.	High pollination accuracy	15
	IX.	Inbreeding depression	15
	D. EFFE	ECTS OF MOVEMENT ON REPRODUCTIVE FITNESS	16
	E. COS	IS OF MOVEMENT	16
	F. MEC	HANISM OF MOVEMENT	17
	G. PERM	MANENT/ TEMPORARY CLOSURE OF THE STIGMA	18
	H. EFFE	ECT OF ANAESTHESIS ON STIGMATIC CLOSURE	19-20
	I. DISC	CUSSION	20-23
	J. REFI	ERENCES	23-26

Analysis of Sequence, Structural and Functional Divergence across MIRNA Precursor and Promoter Homologs

Dissertation submitted to UNIVERSITY OF DELHI

in partial fulfillment of the degree of

MASTERS OF SCIENCE

2019

TANVI SHARMA DEPARTMENT OF BOTANY UNIVERSITY OF DELHI DELHI- 110007 INDIA

CERTIFICATE

This Dissertation, a mandatory paper of theoretical nature (BOT 409) titled "Analysis of Sequence, Structural and Functional Divergence across MIRNA Precursor and Promoter Homologs" is being submitted by me to the Department of Botany, University of Delhi as partial fulfillment of M.Sc. dissertation for evaluation by the examiners. I will be fully accountable for any kind of plagiarism if found in my dissertation, and that the teacher involved and the Department concerned shall not be held responsible for it.

(Signature of the candidate) TANVI SHARMA M.Sc. BOTANY Semester IV - 2019

TABLE OF CONTENTS

S.No.	CONTENTS	PAGE NO.
1	Introduction	1-2
2	Review of Literature 2.1 Promoter 2.2 Orthologs and Paralogs 2.3 miRNA 2.4 Genome of the species analyzed	3-5
3	Databases and computational tools 3.1 DATABASES 3.2 SIMILARITY SEARCH TOOL 3.3 MULTIPLE SEQUENCE ALIGNMENT (MSA) TOOLS 3.4 PHYLOGENETIC RECONSTRUCTION TOOL 3.5 SECONDARY STRUCTURE PREDICTION TOOL	6-8
4	Methods 4.1 in-silico method 4.2 Experimental method	9-10
5	Results	11-19
6	Discussion	20
7	Various techniques learnt	21-26
8	References	27-29

THE INITIATION, ESTABLISHMENT, AND MAINTENANCE OF DORSIVENTRALITY AND POLARITY IN VARIOUS PLANT PARTS

DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR DEGREE OF

MASTER OF SCIENCE

DISHA BASERA DEPARTMENT OF BOTANY UNIVERSITY OF DELHI DELHI 110007, INDIA 2020

Title	Page No.
Acknowledgment	2
1) Introduction	4
2) Polarity in embryo	6
3) Polarity in anther	12
4) Polarity in pollen tube	15
5) Polarity in the root and root hairs	17
6) Polarity in leaf	19
a) Leaf primordium initiation	22
b) Leaf polarity establishment	23
c) Leaf lamina outgrowth	34
7) Conclusion	38
8) References	41

POLLEN ALLELOPATHY

DISSERTATION SUBMITTED TO THE UNIVERSITY OF DELHI IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR DEGREE OF

MASTER OF SCIENCE

2020

ELAM LISHA DEVI

DEPARTMENT OF BOTANY UNIVERSITY OF DELHI DELHI-110007 INDIA

CERTIFICATE

It is certified that the dissertation report entitled **"POLLEN ALLELOPATHY"** is a part of paper BOT 409 and a bonafide record of the work in partial fulfilment of Degree of Masters in Botany by **Ms. Elam Lisha Devi** under my supervision in the Department of Botany, University of Delhi.

PROF. RAJESH TANDON

Supervisor

DECLARATION

I hereby declare that the experimental work embodied in this dissertation entitled **"POLLEN ALLELOPATHY"** has been carried out in the Department of Botany, University of Delhi under the supervision of **PROF. RAJESH TANDON** as a part of paper BOT 409 in partial fulfilment of Degree of Masters in Botany. This work is original and has not been published or submitted for publication in part or full for the award of any other degree in the Department or elsewhere.

ELAM LISHA DEVI

M.Sc. Botany

Title	Page no.
Certificate	i
Declaration	ii
Acknowledgement	iii
1. Introduction	1
2. Nature of allelopathy	2
2.1. Autotoxicity and Heterotoxicity	3
2.2. Phytotoxins and Antimicrobials	3
2.3. True and Functional Allelopathy	4
2.4. Inhibitory and Stimulatory	4
2.5. Mechanical and Chemical	4
3. Heterospecific and Conspecific pollen	5
4. Foreign pollen	7
5. When does pollen allelopathy happens?	9
6. Role of Neurotransmitters	10
7. Mode of action showing various pollen-pollen interactions	
on pistil stigma	10
7.1. Excretion and pollen germination	10
7.2. Mode of action of allelochemicals	11
8. Cell-Cell interaction in pollen germination	12
9. Control of <i>Parthenium</i>	12
10. Conclusion	13
11. References	15

APPENDIX

Table 1

Data was created by review of literature and a table was created constituting of information such as pollen donor, pollen receipt, their way of pollination and the response. This data is labelled as in the given Table below.

Reference s	Pollen donor	Family	Pollen recipient	Family	Polli nator	Response	Region
Kanchan & Chandra, 1980	Parthenium hysterophorus	Asteraceae	Crotolaria pellida	Fabaceae	Wind	Fruit set	_
Morales and Traveset, 2008	Morus alba	Moraceae	Morus rubra	Moracee	Wind	Seed set	Canada
Jakobsson et al., 2008	Carpobrotus spp.	Aizoaceae	Asphodelus aestivus	Liliaceae	Same	Seed set	South Africa
Jakobsson et al., 2008	Carpobrotus spp.	Aizoaceae	Dorycnium hirsutum	Fabaceae	Same	Seed set	South Africa
Jakobsson et al., 2008	Carpobrotus spp.	Aizoaceae	Helichrysum stoechas	Asteraceae	Same	Seed set	South Africa
Inderjit and Keating, 1999	Parthenium hysterophorus	Asteraceae	Indigofera spicata Desmodium heterocarpon Tephrosia purpurea	(Fabaceae)	Wind	Fruit set and pollen germinati on	India
Inderjit and Keating, 1999; Ortega et al., 1988	Zea mays	Poaceae	Cassia jalapensis Citrullus lanatus Amaranthus leucocurpus	Fabaceae Cucurbitaceae Amaranthacea e	Wind	Radical growth	
Inderjit and Keating, 1999	Phleum pratense	Poaceae	38 target species	-	Wind	Pollen germinati on	Eastern Canada
Inderjit and Keating, 1999	Hieracium au- rantiacum, H. floribundum, and H. pratense	Asteraceae	Lotus corniculatum, Medicago sativa, Trifolium hybridum, T. repens, and Vicia cracca	Nelumbonace ae (Fabaceae	-	Seed set	-
Arceo- Gomez and Ashman, 2014	Helianthus exilis	Asteraceae	Mimulus guttatus	Phrymaceae	Bee	Pollen tube growth and seed set	Norther n Californ ia

Da Silva and Sargent, 2011	Lythrum salicaria	Lythraceae	Decodon verticillatus	Lythraceae	Insec t	Seed set	North America
Thomson et al., 1982	Hieracium floribundum	Asteraceae	Diervilla lonicera	Caprifoliaceae	Bee	Seed set	Canada

Productivity evaluation and physicochemical characteristics of lotic and lentic water bodies in Delhi.

Dissertation submitted to the University of Delhi in partial fulfilment of the degree of MASTER OF SCIENCE in Botany 2020

HIBU ASUNG

DEPARTMENT OF BOTANY UNIVERSITY OF DELHI DELHI-110007 INDIA April, 2020

CERTIFICATE

This Dissertation, a mandatory paper of theoretical nature (BOT 409) titled **"Productivity evaluation and physicochemical characteristics of lotic and lentic water bodies in Delhi"** is being submitted by me to the Department of Botany, University of Delhi as partial fulfillment of M.Sc. dissertation for evaluation by the examiners. I will be fully accountable for any kind of plagiarism if found in my dissertation, and that the teacher involved and the Department concerned shall not be held responsible for it.

Dr. Ratul Baishya

Hibu Asung

M.Sc. Botany Semester IV – 2020

Chapters	Page No.
1. Introduction	1-5
1.1. pH	
1.2. Total Dissolved Solids	
1.3. Salinity	
1.4. Electrical Conductivity	
1.5. Dissolved Oxygen	
1.6. Biological Oxygen Demand	
1.7. Productivity	
2. Review of Literature	6-8
3. Research Objectives	9
4. Methodology	10-17
4.1. Study Site	
4.2. Determination of pH, TDS, Salinity and EC	
4.3. Estimation of Dissolved Oxygen using Winkler's / Iodometric method	
4.4 Estimation of Biological Oxygen Demand (BOD)	
4.5. Estimation of NPP, GPP and Respiration	
5. Results	18-28
6. Discussion	29-31
7. Conclusion	32
8. References	33-34

"PLANT NEUROBIOLOGY"

DISSTERTATION SUBMITTED TO THE UNIVERSITY OF DELHI IN PARTIAL FULFILMENT FOR THE DEGREE OF

MASTER OF SCIENCE

MEGHA KHARI

M.Sc. (F) Botany

DEPARTMENT OF BOTANY UNIVERSITY OF DELHI DELHI-110007 INDIA

2020

DECLARATION

It is declared that the review work done embodied in this dissertation entitled "**PLANT NEUROBIOLOGY**" has been carried out and submitted as a part of paper BOT- 409 in partial fulfilment of the degree of M. Sc. Botany at Department of Botany, University Of Delhi, Delhi under the guidance of **Professor Vishnu Bhat**. This work is original and not been published or submitted for publication in part or full for the award of any other degree in the department elsewhere.

Date: 07-04-2020

MEGHA KHARI (Candidate)

S.NO.	CONTENT	PAGE NO.
1	INTRODUCTION	1-2
2	PLANT NEUROBIOLOGY	3-7
	2.1. DEFINITION	
	2.2. CHARACTERISTICS	
	2.3. CRITICISM FACED BY PLANT NEUROBIOLOGY	
	2.4 METAPHORS IN RELATION TO PLANT NEUROBIOLOGY 2.5 PLANT NEUROBIOLOGY AND LIVING SYSTEM THEORY	
3	PLANT NEUROBIOLOGY AND INTELLIGENCE IN GREEN PLANTS	7-14
	3.1. FORAGING FOR SOIL RESOURCES (MINERALS & WATER)	
	3.2. BEHAVIOUR TOWARDS LIGHT	
	3.3. BEHAVIOUR TOWARDS SOUND 3.4. MEMORY AND I FARNING	
4	ANALOGIES IN RELATION TO PLANT NEUROBIOLOGY:	14-16
	SIMILARITIES BETWEEN PLANT CELLS AND NEURONS	
5	HISTORICAL OVERVIEW OF PLANT NEUROBIOLOGY	16-18
6	THE PLACE OF PHILOSOPHY WITHIN PLANT NEUROBIOLOGY	18-19
7	INFORMATION TRANSMISSION AND ITS MECHANISM IN PLANTS	19-29
•	7.1 LONG DISATNCE SIGNALLING	
	7.2 NEUROTRANSMITTERS AND NEUROREGULATORS IN	
	PLANTS	
	7.3 COMMUNICATION VIA VOCS (VOLATILE ORGANIC	
	COMPOUNDS)	
8	FUTURE PROSPECTS /SCOPE	30
9	CONCLUSION	31
10	REFERENCES	32-37
11	LIST OF TABLES	38
12	LIST OF FIGURES	39
13	ABBREVIATIONS	40

ELUCIDATING THE INFLUENCE OF MICROBIAL INOCULANTS ON SEED GERMINATION AND SEEDLING GROWTH IN *Albizia lebbeck* (L.) Benth.

Dissertation submitted to the

University of Delhi

in partial fulfillment of the degree of

MASTER OF SCIENCE

2020

NAGMA KHAN

DEPARTMENT OF BOTANY

UNIVERSITY OF DELHI

DELHI- 110007

INDIA

CERTIFICATE

This Dissertation, a mandatory paper of theoretical nature (BOT 409) titled "Elucidating the effect of microbial inoculants on seed germination and seedling growth in *Albizia lebbeck* (L.) Benth." is being submitted by me to the Department of Botany, University of Delhi as partial fulfillment of M.Sc. Dissertation for evaluation by the examiners. I will be fully accountable for any kind of plagiarism if found in my dissertation, and that the teacher involved and the Department concerned shall not be held responsible for it.

Nagma khan M.Sc. Botany Semester IV -2020

Ch	apters	Page No.
	Abbreviations	1
1.	Introduction	2-10
	1.1. Purpose of the research	
	1.2. Bio-fertilizers	
	1.3. Essential plant nutrients and genera of microbial inoculants	
	1.4. Albizia lebbeck (L.) Benth.	
	1.5. How the study on bio-fertilizer is going to benefit farmers?	
2.	Review of literature	11-15
	2.1. Bacillus spp. as bio-fertilizer	
	2.2. Azotobacter spp. as bio-fertilizer	
	2.3. Enterobacter spp. as bio-fertilizer	
	2.4. Glomus spp. as bio-fertilizer	
	2.5. Seed viability analysis	
	2.6. Seed vigor index	
	2.7. NPK analysis	
3.	Research objectives	16
4.	Methodology	17-21
	4.1. Experimental layout and treatment details	
	4.2. Experimental study and analysis	
5.	Results	22-35
6.	Discussion	36-37
7.	Conclusion	38
	References	39-43

A case study on Phytoremediation of polluted waters of Delhi NCR using *Eichhornia crassipes* (Mart.) Solms

Dissertation submitted to the

University of Delhi

in partial fulfillment of the degree of

MASTER OF SCIENCE (IN BOTANY)

2020

Riya Rai

DEPARTMENT OF BOTANY UNIVERSITY OF DELHI DELHI-110007, INDIA
This Dissertation, a mandatory paper of theoretical nature (BOT 409) titled "A case study on **Phytoremediation of polluted waters of Delhi NCR using** *Eichhornia crassipes* (Mart.) Solms " is being submitted by me to the Department of Botany, University of Delhi as partial fulfillment of M.Sc. dissertation for evaluation by the examiners. I will be fully accountable for any kind of plagiarism if found in my dissertation, and that the teacher involved and the Department concerned shall not be held responsible for it.

Riya Rai

M.Sc. Botany Semester IV – 2020

CONTENTS

Chapters		Page No.	
1) Introduction	-	5-18	
Phytoremediation			
• Eichhornia crassipes (Mart.) S	Solms		
Parameters to study the pote	ential of <i>Eichhornia cr</i>	assipes (Mart.) Solms	
Research objectives			
2) Review of Literature	-	19-22	
3) Materials and Methods	-	23-24	
4) Observations	-	25-29	
5) Results	-	29- 54	
6) Discussion	-	55- 58	
7) Conclusion	-	58	
8) References	-	59-60	

STATUS OF PHYSIOCHEMICAL PROPERTIES IN VARIOUS STAGES OF SEWAGE AND WATER TREAMENT PLANTS IN DELHI

Dissertation submitted to the

University of Delhi

In partial fulfilment of the degree of

MASTER OF SCIENCE (IN BOTANY)

2020

M. TOMUILIM TONTANG DEPARTMENT OF BOTANY UNIVERSITY OF DELHI DELHI-110007 INDIA

This Dissertation, a mandatory paper of theoretical nature (BOT 409) titled **"Elucidation of various nutrients and water quality parameter in different stages of water treatment plant."** is the record of the work done by me and being submitted to the Department of Botany, University of Delhi as partial fulfillment of M.Sc. dissertation for evaluation by the examiners. This dissertation has undergone plagiarism check using Urkund software and was within permissible limit (5%) and does not amount to plagiarism.

(DR. RATUL BAISHYA) Department of Botany Delhi University (M.TOMUILIM TONTANG)

M.Sc. Botany Semester IV – 2020

CONTENTS

Chapters Page no. 1 1.Introduction..... Sewage Water Treatment..... 1-4 4-6 Drinking Water Treatment..... 2. Treatment plants Sonia Vihar WTP..... 6-9 Rithala STP..... 9-10 Mayapuri CETP..... 11-13 3. Review of literature..... 13-15 4. Materials and Methods..... 15-20 5. Results..... 21-62 6. Discussion..... 63-69 7. Conclusion..... 70-71

DEVLOPMENTAL PLASTICITY IN PLANTS

Dissertation submitted to the

University of Delhi

In lieu of Paper BOT-Elective-4017

In Partial Fulfilment of the Degree of

Master of Science

2021

AKANSHA JAISWAL DEPARTMENT OF BOTANY DELHI UNIVERSITY DELHI-110007

This dissertation entitled "DEVLOPMENTAL PLASTICITY IN PLANTS" compiled under the mentorship of Prof. Vishnu Bhat, Department of Botany, University of Delhi, is being submitted to the University of Delhi in lieu of Paper BOT-Elective-4017 for the partial fulfilment of the degree of Master of Science in Botany.

I certify that this is an original work based on the review of literature, which has not been submitted for degree or diploma of this or any other University/Institution in India or abroad. If any kind of plagiarism is found in dissertation, I shall be solely responsible for it.

AKANSHA JAISWAL

M. Sc. Botany

(Semester IV - 2021)

TABLE OF CONTENTS

- 1. INTRODUCTION
- 2. PLASTICITY
- 3. PHENOTYPIC PLASTICITY
- 4. TYPES AND SUBTYPES OF PHENOTYPIC VARIATION
- 5. DIVERSE MODES OF PLASTICITY
 - **5.1 PLASTICITY FOR FUNCTIONAL TRAITS**
 - 5.2 ASPECTS OF DEVLOPMENTAL PLASTICITY
 - 5.3 LIFE-HISTORY PLASTICITY
 - 5.4 CROSS-GENERATIONAL PLASTICITY
- 6. ENVIRONMENTAL INPUTS THAT DRIVE PHENOTYPIC PLASTICITY
 - 6.1 LIGHT
 - 6.2 TEMPERATURE
 - 6.3 NUTRIENT-SENSING
- 7. PRIMARY DEVLOPMENTAL OUTPUT OF THESE SIGNAL(INPUT)
 - 7.1 GEMINATION
 - 7.2 MORPHOLOGICAL PATTERNING
 - 7.3 FLOWERING
- 8. EVOLUTIONARY SIGNIFICANCE OF PLASTICITY
 - 8.1 NON-ADAPTIVE PLASTICITY
 - **8.2 ADAPTIVE PLASTICITY**
- 9. CASE STUDY

Phenotypic plasticity of aposporous embryo sac development in *Hieracium* praealtum

10. REFERENCES

DISSERTATION (BOT 409)

The world of sRNAs in plants- diversity, mechanism of action, and role during biotic and nutritional stresses: a review and *in-silico* analysis

UNIVERSITY OF DELHI

DEPARTMENT OF BOTANY

Submitted by:

Arzoo Dhankhar 19036745002

MSc Botany (Semester IV)

Supervised by:

Dr. Sandip Das

This is to certify that the dissertation work entitled "The world of sRNAs in plants- diversity, mechanism of action, and role during biotic and nutritional stresses: a review and *in-silico* analysis" submitted to the Department of Botany, University of Delhi, New Delhi, India in fulfilment of the requirement for the award of Master of Science in Botany, depict the original work carried out by Ms Arzoo Dhankhar under supervision of Dr. Sandip Das. This work has not been presented in any other university for the award of any degree.

Date: April 14, 2021

Dr. Sandip Das

Supervisor Associate Professor Department of Botany University of Delhi Delhi – 110007 India Prof. S.B. Babbar

Head of Department Department of Botany University of Delhi Delhi 110007 India

CONTENTS

Declaration

Certificate

Aknowledgement

Literature Review

- 1. Introduction
- 2. Proteins involved:
 - 2.1 DICER
 - 2.2 Argonaute proteins
- 3. Biogenesis of miRNA
- 4. Types and biogenesis of siRNA
- 5. Mode of action
- 6. Silencing movement
 - 6.1 Intracellular movement
 - 6.2 Cell to cell movement
 - 6.3 Systematic movement
- 7. Role in biotic stresses
 - 7.1 sRNA protection in plants against viral attacks
 - 7.2 sRNAs during viroid attacks
 - 7.3 sRNA silencing during bacterial attack
 - 7.4 Role of sRNAs during plant interactions with fungi and oomycetes
 - 7.5 sRNA movement between different species
- 8. sRNAs during abiotic stresses
 - 8.1 sRNAs and nutrient deficiencies

- 8.1.1 sRNAs and phosphate deficiency
- 8.1.2 sRNAs and sulphate deficiency
- 8.1.3 Copper homeostasis and sRNAs
- 8.1.4 Nitrogen homestasis and sRNAs
- 9. Conclusion and perspectives

IN-SILICO Analysis

- 10. Work flow
- 11. Results and Discussion

12. References

University of Delhi, New Delhi / 2015-balyan-Elucidation.... Vol2-Springer-Girdhar K. Pandey-

1/26

Curiginal

SA	334237_1_En_Online.pdf Document 2015-balyan-Elucidation Vol2-Springer-Girdhar K. Pandey-334237_1_En_Online.pdf (D87879336) Submitted by: anil.anilgrover@gmail.com Receiver: anil.anilgrover.du@analysis.urkund.com	88	1
w	URL: https://doi.org/10.1104/pp.19.00921 Fetched: 4/12/2021 12:51:00 PM	88	1
w	URL: https://doi.org/10.3389/fgene.2021.552454 Fetched: 4/12/2021 12:51:00 PM	88	1
SA	Review_Anushree_and_Shivaprasad_2017.docx Document Review_Anushree_and_Shivaprasad_2017.docx (D32092794)	88	1
w	URL: https://doi.org/10.3390/ijms22062913 Fetched: 4/12/2021 12:51:00 PM	88	1
w	URL: https://www.mdpi.com/2223-7747/9/3/299 Fetched: 4/12/2021 12:51:00 PM	88	1
w	URL: https://doi.org/10.1093/nar/gkr319 Fetched: 4/12/2021 12:51:00 PM	88	1
SA	University of Delhi, New Delhi / SKA-Ann Rev Phyto-2010.pdf Document SKA-Ann Rev Phyto-2010.pdf (D87882555) Submitted by: anil.anilgrover@gmail.com Receiver: anil.anilgrover.du@analysis.urkund.com	88	1
w	URL: https://www.researchgate.net/publication/47357172_Virus-derived_small_interfering Fetched: 11/8/2019 6:15:29 AM	88	1
w	URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356646/ Fetched: 6/12/2020 8:57:28 PM	88	1

PLANT MIGRATION, EXTINCTION AND ADAPTIVE RESPONSES TO CLIMATE CHANGE

Dissertation submitted to the

University of Delhi

in partial fulfillment of the degree of

MASTER OF SCIENCE

2021

MUSKAAN GUPTA

(19068745003)

DEPARTMENT OF BOTANY

UNIVERSITY OF DELHI

DELHI-110007

INDIA

ACKNOWLEDGEMENT

This dissertation is an amalgamation of hard work, support and guidance of my mentor and blessings from god and my parents.

I would like to express my sincere gratitude to my esteemed supervisor Dr. Ratul Baishya, for his consistent support, encouragement, expert guidance which has been invaluable throughout the dissertation. His expertise, scientific temperament, balanced approach and meticulous scrutiny has proved to be very valuable which helped me to complete this dissertation to the best of my abilities.

> Muskaan Gupta M.Sc. Botany 19068745003 Semester IV-2021

CONTENTS

Chapters	Page	e No.
Abbreviations	1	
Abstract	2	
1. Introduction		3-4
2. Velocity of climate change		4-5
2.1 Utility of calculating velocity of climate change		
3. Impact of climate change		5-9
3.1 Change in flower colours		
3.2 Shrinking of the forest area		
3.3 Plant-pollinator interactions		
3.3.1 Consequences of mismatch		
3.3.2 Buffer against the mismatch		
4. Plant migration		9-12
4.1 The potential velocities of plant movements		
4.2 Evidences of plant migration		
5. Plant extinction		12
6. Adaptation to climate change		13-17
6.1 Response mechanism: Plastic vs. Genetic		
6.2 Responses along the three axis- Spatial, Temporal and Self		
6.3 Retrospective vs. Prospective adaptation		
6.4 Understanding adaptation at molecular level		
6.4.1 Applications		
6.5 Release of volatile organic compounds-an adaptation		
7. Assessing the future of global biodiversity		17-20

7.1 Species distribution models	
7.2 Ecological niche-population models	
8. Conservation methods	20-22
8.1 Identification of refugia	
8.2 Translocation of species	
9. Conclusion	22-23
10. Future research	23
References	23-32

Latest Development in Carbon credit and Carbon capture and storage(CCS) in the World and in India

DISSERTATION SUBMITTED TO UNIVERSITY OF DELHI

2021

Subham Sai Nayak DEPARTMENT OF BOTANY UNIVERSITY OF DELHI DELHI-110007

This dissertation a mandatory paper titled **"Latest Development in Carbon credit and Carbon capture and storage(CCS) in the World and in India"** is being submitted by me to the Department of Botany, University of Delhi as partial fulfilment of the degree of Master of Science. I hereby declare that this is an original work based on a review of the literature and if any kind of plagiarism is found, I shall be solely responsible for it.

Prof. Ratul Baishya Supervisor Department of Botany University of Delhi Delhi-110007 Prof. S.B Babbar H.O.D Department of Botany University of Delhi Delhi-110007

Contents

Chapters	Page No.
Abbreviations	5
1. Introduction	6-7
1.1. Purpose of the research	0.10
2. Review of literature	9-12
2.1. Carbon Capture and Storage $2.2.1$ Wby is CCS important?	
2.2.1 Why is CCS important?	
2.2.2 World on CCS 2.2 Carbon Credits	
2.3. Carbon trading	
2.3.1. Cap and Trade	
2.3.2. Kyoto Protocol and Carbon Trading	
2.3.3. Other trading units	
2.5. Carbon Pricing	
2.5.1. Need for Carbon Pricing	
2.5.2. Major Types of Carbon Pricing	
2.5.3. Carbon Tax	
3. Latest in the fields	13-21
3.1. Direct Air Capture	
3.1.1 Climeworks	
3.2. Cooling towers	
3.2.1 Noya Labs	
3.3. CO2 Grabbing Chemicals	
3.4. CCUS project in India	
3.4.1. Concept 3.4.2. Destur International	
A Future Prospects	22-23
4.1 In India	22-23
4.1.1 Industries need to bring global experience to India	
4.1.2. Indigenous innovation need support	
4.1.3. Government initiative	
4.2. In the World	
5. Discussion	24-26
6. Conclusion	27
References	

A DEEP DIVE OF THE MORPHOLOGICAL VARIATION WITH THE AID OF MOLECULAR ANALYSIS AND MOLECULAR EVOLUTION OF MIRNA156 GENE ACROSS THE MEMBERS OF BRASSICACEAE

Dissertation submitted to UNIVERSITY OF DELHI In partial fulfilment of the degree of MASTERS OF SCIENCE 2022

> BYONKESH NONGTHONGBAM DEPARTMENT OF BOTANY UNIVERSITY OF DELHI DELHI – 110007 INDIA

SHADOWS OF DATA COLLECTION AND STUDY SITE

This Dissertation, a mandatory paper of theoretical nature (Paper code: 221602417) titled "A deep dive of the morphological variation with the aid of molecular analysis and molecular evolution of *MIRNA156* gene across the members of Brassicaceae" is the record of the work, performed by Byonkesh Nongthongbam and being submitted to the Department of Botany, University of Delhi as partial fulfilment of M.Sc. Dissertation for evaluation by the Examiners. This work is original and its plagiarism percentage has found to be within the permissible limit according to plagiarism checker Ouriginal software.

(Signature of Supervisor) Prof. Sandip Das Department of Botany Delhi University Signature of Candidate: Byonkesh Nongthongbam M.Sc. Botany Semester IV, Department of Botany Roll Number: 20025745003

Curiginal

Document Information

Analyzed document	byon, plagiarism check.docx (D135432014)
Submitted	2022-05-04T13:03:00.0000000
Submitted by	Sandip Das
Submitter email	sdas@botany.du.ac.in
Similarity	7%
Analysis address	sdas.du@analysis.urkund.com

Sources included in the report

SA	Indu_Vinay.doc Document Indu_Vinay.doc (D63404386)	88	2
W	URL: https://www.nature.com/articles/s41467-019-09134-9 Fetched: 2020-03-20T16:44:32.5830000	88	1
W	URL: https://www.oecd-ilibrary.org/brassica-crops-brassica-species_5jm26sv2db30.pdf? itemId=%2Fcontent%2Fcomponent%2F9789264253018-6-en&mimeType=pdf Fetched: 2019-09-28T18:06:30.7300000	88	4
W	URL: https://www.britannica.com/plant/brassica Fetched: 2020-04-21T16:50:29.7470000	88	1
W	URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0162103 Fetched: 2021-10-31T15:59:10.1600000	88	1
W	URL: https://commons.wikimedia.org/wiki/Category:Brassica_juncea Fetched: 2022-05-04T13:12:49.1630000	88	5
W	URL: https://www.nature.com/articles/s41598-018-23334-1 Fetched: 2019-10-18T13:34:47.4400000	88	1
w	URL: https://www.researchgate.net/publication/350630670_Genome- wide_evolutionary_analysis_of_precursor_sequences_of_MIR156_and_MIR172_family_members_in _Brassica_species Fetched: 2021-06-29T10:24:36.9470000		1

TABLE OF CONTENTS

HEADINGS	Page no.
1. General Introduction	1-2
2. Theme 1- Mining of the relic of <i>Brassica</i> ancestor	3-11
• History	3
Origin and domestication	4-5
Genomic diversity	6-7
Taxonomical status.	8-11
3. Theme 2- Evaluation of morphological variation using Principal Component Analysis and Cluster Analysis with the aid of molecular analysis (using PCR-Based SSR Markers) in the members of <i>Brassica</i> species.	12-30
• Abstract	12
Introduction	12-14
Materials and methods	14-15
Observations	16-25
Result and discussion	26-30
Conclusion.	30
4. Theme 3-Evolution of <i>MIRNA156</i> genes across the members of Brassicaceae by in silico analysis.	31-41
Abstract	31
Introduction	31-33
Materials and methods	34

TABLE OF CONTENTS

Observations	34-39
Result and discussion	40-41
Conclusion.	41
5. General conclusion :	42
6. References	43-49

SOME INSIGHTS INTO THE ENDOSPERM AND EMBRYO INTERACTIONS AND THEIR COORDINATION

by

Kanika Thakur

(20047745011)

under the supervision of

Dr. Vishnu Bhat

Department of Botany

University of Delhi

This dissertation is Submitted to University of Delhi in partial fulfilment for the award of Post Graduate degree in Botany

I am submitting this dissertation, an obligatory theoretical paper titled "**Some Insights into the Embryo-Endosperm Interactions and Their Coordination**," to the Department of Botany, University of Delhi, as part of my M.Sc. Dissertation for review by the examiners. If plagiarism is discovered in my dissertation, I will be considered totally responsible, and neither the instructor nor the department concerned will be held liable.

(Signature of student) Kanika Thakur M.Sc Botany Semester IV, 2022

Table of content

		Title	Page
			no.
		Abstract	6
1.		Introduction	7
	1.1	Female gametophyte	
	1.2	Double fertilization	
2.		Communication route: Aploplastic, symplastic or both	9
	2.1	Before double fertilization	
	2.2	After double fertilization	
3.		Embryo nourishment pathways: The Trans-Endosperm and the	12
		Suspensor pathways	
	3.1	The Trans-Endosperm pathway	
	3.2	The Suspensor pathway	
4.		Endosperm proliferation: contingent upon embryogenesis or	14
		not?	
5.		Role of endosperm interactions	16
	5.1	Are Embryo endosperm interactions only limited to nutrient	
		intake?	
	5.2	Molecular signals involved in the interactions	
	5.3	Regulation of Endosperm Cellularization Time	
6.		Process of endosperm cellularization	20
	6.1	Factors governing endosperm cellularization	
7.		Managing the molecular diffusion in between embryo and	22
		endosperm	
	7.1	Formation of embryonic cuticle	
	7.2	Embryo cuticle: permeable, selectively permeable or totally	
		impermeable	
8.		Building extra cuticular sheath	27
	8.1	Function of extra-cuticular sheath	

9.		Endosperm Invasion by Embryo	29
	9.1	Endosperm Cell Elimination	
10.		The Final Stage: Germination and Embryo–Endosperm	31
		Communications	
	10.1	Peptide and hormonal crosstalk between Embryo-Endosperm	
		for controlling seed dormancy	
	10.2	At germination: Mechanical interactions between the embryo	
		and endosperm	
11.		Role of endosperm in seedling growth	33
12.		Conclusion	35
13.		Present enigmas and future perspective	36
14.		References	37

To study the conservation and diversification of MIR159 family and basis of MIR159/MIR319 homology across land plants.

Dissertation submitted to the University of Delhi in partial fulfilment of the requirements

for the degree of

MASTER OF SCIENCE

in

BOTANY

MAY 2022

PRIYA SINGH KUSHWAHA

Plant Biology Laboratory Department of Botany University of Delhi Delhi-110007 India

This is to certify that the entitled "To study the conservation and diversification of MIR159 family and basis of MIR159/MIR319 homology across land plants" submitted to the Department of Botany, University of Delhi, New Delhi, India, in fulfilment of the requirement for the award of Master of Science, comprises the dissertation work of Priya Singh Kushwaha (batch 2020-2022) under the supervision of Dr. Sandip Das.

Dr. Sandeep Das Supervisor Associate Professor Department of Botany University of Delhi Delhi-110007, India Dr. Suman Lakhanpaul Professor Head of the department Department of Botany University of Delhi Delhi-110007, India

TABLE OF CONTENTS

Declaration

Certificate

Acknowledgment

Abbreviations

Preface

1. INTRODUCTION
2. REVIEW OF LITERATURE
1.1 miRNAs and their Biogenesis
1.2. Evolutionary dynamics of miRNAs
1.3. miRNA 159- An Ancient Gene Regulator Strongly Conserved and Highly Abundant
Throughout the Plant Kingdom8
2. MATERIALS AND METHODS
2.1. Sequence Identification of MIR159 and MIR319 precursor homologs10
2.2. Nomenclature of precursor and mature miRNA159 species10
2.3. Sequence Alignment and Phylogenetic reconstruction
2.4. DNA isolation and PCR analysis11
3. RESULTS
3.1. Phylogenetic analysis of MIR159 precursor sequences across embryophytes12
3.2. Diversity analysis of MIR159 gene in Brassicaceae family16
4. Deducing MIR159 and MIR319 common point of origin based on sequence alignment and RNA secondary structure using previously available published data
4.1. Conservation of the bi-duplex stem loop structure across land plants indicates common
origin of miR159 and miR31919
4.2. Target specificity between miR159 and mi319 a proof of subfunctionalization22
5. DISCUSSION
6. REFERENCES

Tracing the origin of double fertilisation

DISSERTATION SUBMITTED TO THE UNIVERSITY OF DELHI IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

2021-2023

RADHIKA RAJ M.Sc. (F) BOTANY DEPARTMENT OF BOTANY UNIVERSITY OF DELHI DELHI- 110007 INDIA

This is to certify that the work represented in the dissertation entitled **"Tracing the origin of double fertilisation"** was conducted under the guidance of Prof. Shailendra Goel at Department of Botany, University of Delhi.

This work is original and has not been submitted in parts or in full for the award of any other degree or diploma to any university.

April 24, 2023

RADHIKA RAJ (Candidate)

Prof. Suman Lakhan paul (Head of Department)

CONTENTS

1. Background	1
1.1 Journey from dominant gametophytic phase to dominant sporophytic phase	1
1.2 Habitat conditions during transition to land	2
2. Reproductive Changes	2
2.1 Changes in male gametophyte	2-3
2.2 Changes in female gametophyte	3-5
3. Double Fertilisation	6-8
3.1 MADS box genes	9-11
3.2 Genes controlling central cell fate	12-14
3.3 MYB gene family	15-17
3.4 Genes regulating egg cell identity	17-20
3.5 Genes responsible for gamete fusion	20-23
4. Discussion	24-25
5. References	26-31

Annexure-II Sample Field Work Documents

DEPARTMENT OF BOTANY, UNIVERSITY OF DELHI M.Sc. Semester IV- 2019

BOT- 405: Agricultural Ecology & BOT - 406: Advanced Plant Systematics

One full day field trip to agriculture fields in Ibrahimpur, Bakhtawarpur Village, Delhi

Dated: 14-01-2019 🗸

			0
1 1	719802	ARUN ROHILLA	Antohille
2 1	719805	CHANDANA KUMARI JHA	Chandana the.
3 1	719809	MEGHNA JINDAL	Aquia.
4 1	719810	MEHAK BHALLA	Welrad
5 1	719812	NINGTHOUJAM BIDYARANI DEVI	" Bidyoram
6 1	719814	PRIYANKA SHARMA	peripules
7 1	1719817	SHIVANI JINDAL	Shirrand
8	1719822	YAMINI KHATRI	ychatri
9	1719904	DIKSHA NARA	
10	1719905	FARAN SALIK	Possoul
11	1719801	ANAMIKA BHATTACHARJEE	A Lilla
12	1719912	PRABHA	herables
13 1719914		SAGAR SINGH	Gym
14	1720004	MANDEEP SINGH	Mindup
15	1720205	HIMANSHI VERMA	Henoviely
16	1720210	MAYANKA MAHAJAN	plat t
17 1720212 18 1720215		NISHA SELLA	Netre
		SHIPRA RUHAL	Shipsa Fundal
19	1720216	SHRESHTHA YADAV	Spisningt
21		Dr. Ratul Baishya	2 Barthe
22		Prof. P.L. Uniyal	And:
26		Bharat Bhushan (Lab Staff)	
27		S.P. Singh (Lab Staff) a oll Allan	Fed
29		Renn Puri	Kumpun
29		Struite Kesana Shouts n	BASTI
It lead	~	डाo रतुल वैश्य / Dr. Ratul Baishya सहायक प्राव्यापक / Assistant Professo वनस्पति विज्ञान विभाग Department of Botany	P.

JNIVERSITY OF DELHI DEPARTMENT OF BOTANY FACULTY OF SCIENCE

NORTH CAMPUS, DELHI-110007 (INDIA)

Dr. RATUL BAISHYA Assistant Professor & Principal Investigator DST-SERB Research Project ☎ +91-11-27667573 +91-11-27667725Ext. 1420
Fax: +91-11-27667829
Mobile:+919910807343
E-mail: rbaishyadu@gmail.com rbaishya@botany.du.ac.in

10nd January, 2020

Head Department of Botany University of Delhi Delhi-110007

Subject: Field visit to agricultural fields in Bawana and adjoining areas in Delhi

Dear Sir,

We are taking the students of BOT 304 for agricultural sample collection on the 13th January, 2020. This is a regular field trip every year for students of Agroecology where students get to see the agro-diversity of cultivated crop species in and around Delhi and interact with the farmers. The samples collected by the students would be used for nutrient analysis throughout the semester.

We therefore request you to make necessary travel arrangement for the upcoming field trip.

Thanking you,

Sincerely yours,

(Dr. Ratul Baishya)

Enclosed: List of Students and staff

डा॰ रतुल बैश्य / Dr. Ratul Baishya सहायक प्राध्यापक/Assistant Professor यत्तरपति विज्ञान विभाग Department of Botany दिल्ली विश्वविद्यालय/Universify of Delhl विल्ली-110007/Delhl-110007 Approved and recommended

(Head, Department of Botany)

भोफोसर के. एस. राव Professor K. S. Rao बिभागाध्यस, वनस्यति विज्ञान विभाग Head, Cepartment of Botany बिस्ती विस्वविद्यालय/University of Deini बिस्ती-1 10007/Deini-110007

्रजा॰ रतुल येश्य / Dr. Ratul Baishya सहायक प्राच्यापक /Assistant Professor वनरपति विज्ञान विभाग Department of Bolany दिल्ली विथवरियालय/University of Delhi दिल्ली-110007 / Delhi-110007

Department of Botany, University of Delhi

M.Sc Part II, Semester III

Botanical Excursion to Manila, Almora (Uttarakhand) 8.10.2018 to 13.10.2018

Statement of Expenditure

S.No.	Items	Bill details	Expenditure (Rs)
1.	Local Travel expenditure of 40 members (38 M.Sc. students, One Research Scholar and one teacher) on hiring of two mini buses for travelling from Ramnagar to Manila (Almora) (Uttarakhand)	Bill No 043 dated 16.10.2018 (Hans India Tour, A- 15&16Kh, No 45/10 Sadatpur, Karawal Nagar, Delhi Bus No DL 1PC 6041	Rs 14,700
2	Accommodation for 40 members for one day at Corbett Roop Resort, Mohan, Ramnagar on 9.10.2018	Corbett Roop Resort, Mohan (uttarakhand) Bill No. 3391 dated 10.10.2018	Rs 14,560/-
3	Accommodation for 40 members for two day at Govt. Tourist Rest House Holiday Home, Manila (Almora) on 10 to 11.10.2018	Govt. Tourist Rest House Holiday Home, Manila (Almora Uttarakhand Bill No. 026 dated 12.10.2018	Rs 5,700/-
4	Food (Lunch) Charges for 40 members at Nanak Restaurent, Nainital on 12.10.2018	Nanak Restaurent, Nainital Bill No V008162 dated 12.10.2018	Rs 7,571/-
4	Food (Dinner) Charges for 40 members at Gill Brothers Dhaba, Bajpur, Uttarkahand on 12.10.2018	Gill Brothers Dhaba, Bajpur, Uttarkahand Bill No. 06 dated 12.10.2018	Rs 4,920/-
	Total		Rs 47,451

annal

Karuna Śharma Student Representative Department of Botany University Of Delhi, Delhi 110007 Forty seven thouand four hundred fifty one only

Anshul Dhyani Research Scholar Department of Botany University Of Delhi, Delhi 110 007

23/10/2018 P L Uniyal Professor Department of Botany University Of Delhi Delhi 110 007 Dr. PREM L. UNIYAL Professor Department of Botany University of Delhi Delhi-110007 (India)

Department of Botany, University of Delhi

M.Sc Part II, Semester IV

Botanical Excursion to Kasol and Manali (Himachal Pradesh) 18.2.2020 to 22.2.2020

Statement of Expenditure

1		Bill details	Expenditure (Rs)
1.	Local Travel expenditure of 40 members (25 M.Sc. students, two teachers) on hiring of mini bus for travelling from Kasol (Kullu) to Manali (Himachal Predesh)	Bill No 210 dated 28.2.2020 (Hans India Tour, A- 15&16Kh, No 45/10 Sadatpur, Karawal Nagar, Delhi Bus No LIK08 4061	Rs 13,650/-
2	Accommodation for 27 members for one day at Kasol Camp (Kullu), on 19.2.2020	Kasol Camps, Bill No. 1214 dated	Rs 13,440/-
3	Food Bill 27 members for one day at Lord Residency, Naggar Road, Manali on 20.2.2020	Lord Residency, Left Bank, Naggar Road, Manali (HP) Bill No.726/19-20 dated 21.2.2020	Rs 11,424/-
4	Food (Dinner) Charges for 27 members at Hotel River Bank, Mandi, (HP) on 21.2.2020	Hotel River Bank, Mandi (HP) Bill No. 55825 dated 21.2.2020	Rs 5250/-
	Total		43,764/-

(Rupees Forty three thousand seven hundred sixty four only)

Gamen

Gaurav Student Representative Department of Botany University Of Delhi, Delhi 110007

Reeya Dahiya

Student Representative Department of Botany University Of Delhi Delhi 110007

ghu

Shruti Kasana Guest Faculty Department of Botany University Of Delhi, Delhi 110 007

P L Unival Professor

Dr. PREM L. UNIYAL Professor Department of Botany University of Delhi Delhi-110007 (India)

Botanical Excursion of M.Sc. Botany Sem III to Lahul Valley, Himachal Pradesh 15.10.22 to 19.10.22

SN	Date	Item		
1	15.10.2022	Food Bill for 36	Bill Details	Expenditure
		Members of the	Bill No 138814 dated 15.10.2022	4279/-
		group (dinner)	G T Road Muthal Series	
2	16.10.2022	Breakfast for 36	Bill No 1876 data d 16 10 2022	
		members of the group	Hotel River Bank Souli VI 1 V 1	4914/-
	CHANCEN	Broup	road Mandi	
3	17.10.2022	Accommodation for	Bill No 725/22 23 deted 17 10 2022	
		36 members of the	Hotel Lord Residency Loft Dark	18,816/-
		group for two Nights	Naggar Road Manali	
	-	(16 and 17 Oct 2022)	88- Hour, Manan	
4	17.10.2022	Food Bill (Lunch and	Bill No 1670/22-23 dated 15 10 2022	10.000/
		Dinner) for 36	Park Café restaurant	18,000/-
5	10 10 2022	members of the group	Naggar Road, Manali	
5	18.10.2022	Travel Bill for the	Bill No 421 dated 18.10.2022	10 500/
		Visit to ICAR	Hans India Tour, A-15-16, Panchavat	10,500/-
		Regional Station and	Ghar, Karawal Nagar, New Delhi	
		GB Pant Institute,		
		Nullu and back to		
6	18 10 2022	Dinner for 26	DUIN	
Ť	. 5.10.2022	members of the area	Bill No 1877 dated 18.10.2022	6615/-
		members of the group	Hotel River Bank, Sauli Khad, Kullu	
		and the particular	road, Mandi	
Total				
	10(a)			63124/-

Statement of Expenditure

The group made own arrangement for travelling from Delhi to Manali and Back to Delhi

Bandana

Student Excursion Representative Department of Botany University of Delhi

Arnti Dr Shruti Kasana

Assistant Professor Department of Botany University of Delhi

PLUniyal 23/10/2028

Professor Department of Botany University of Delhi

Dr. PREM L. UNITAL Senior Professor Department of Botany University of Delhi Delhi-110007 (India)